认 证:工商信息已核实
访问量:2737062
北京精微高博科学技术有限公司 2014-03-10 点击3374次
一、实验目的
(1)了解低温氮吸附法测定多孔材料的比表面积及孔隙分布的原理。
(2)掌握低温氮吸附法测定比表面积及孔隙分布的方法。
二、实验概述
多孔材料的比表面积和孔隙分布测试在各行各业已逐步引起人们的普遍重视,是评价粉末及多孔材料的活性、吸附、催化等多种性能的一项重要参数。广泛应用于药品、陶瓷、活性炭、碳黑、油漆和涂料、医学植入体、推进燃料、航天隔绝材料、MOF储氢材料、碳纳米管和燃料电池的研究。
比表面及孔隙分布测试方法根据测试思路不同分为吸附法、透气法和其它方法,透气法是将待测粉体填装在透气管内震实到一定堆积密度,根据透气速率不同来确定粉体比表面积大小,比表面测试范围和精度都很有限;其它比表面积及孔隙分布测试方法有粒度估算法、显微镜观测估算法,已很少使用;其中吸附法比较常用且精度相对其它方法较高。吸附法是让一种吸附质分子吸附在待测粉末样品(吸附剂)表面,根据吸附量的多少来评价待测粉末样品的比表面及孔隙分布大小。根据吸附质的不同,吸附法分为低温氮吸附法、吸碘法、吸汞法和吸附其它分子方法;以氮分子作为吸附质的氮吸附法由于需要在液氮温度下进行吸附,又叫低温氮吸附法,这种方法中使用的吸附质--氮分子性质稳定、分子直径小、安全无毒、来源广泛,是理想的且是目前主要的吸附法比表面及孔隙分布测试吸附质。
三、实验原理
1、比表面积测试原理
比表面积是指1g固体物质的总表面积,即物质晶格内部的内表面积和晶格外部的外表面积之和。低温吸附法测定固体比表面和孔径分布是依据气体在固体表面的吸附规律。在恒定温度下,在平衡状态时,一定的气体压力,对应于固体表面一定的气体吸附量,改变压力可以改变吸附量。平衡吸附量随压力而变化的曲线称为吸附等温线,对吸附等温线的研究与测定不仅可以获取有关吸附剂和吸附质性质的信息,还可以计算固体的比表面和孔径分布。
(1)Langmuir吸附等温方程――单层吸附
理论模型:
三点假设:吸附剂(固体)表面是均匀的;吸附粒子间的相互作用可以忽略;吸附是单分子层。
吸附等温方程(Langmuir)
(1)
式中:V 气体吸附量
Vm 单层饱和吸附量
P 吸附质(气体)压力
b 常数
以对p作图,为一直线,根据斜率和截距可求出b和Vm,只要得到单分子层饱和吸附量Vm即可求出比表面积Sg 。用氮气作吸附质时,Sg由下式求得
(2)
式中:Vm用ml表示,W 用g表示,得到是的比表面Sg为(㎡/g)。
(2)BET吸附等温线方程――多层吸附理论
BET法的原理是物质表面(颗粒外部和内部通孔的表面)在低温下发生物理吸附,目前被公认为测量固体比表面的标准方法。
理论模型:
假设:物理吸附是按多层方式进行,不等第一层吸满就可有第二层吸附,第二层上又可能产生第三层吸附,吸附平衡时,各层达到各层的吸附平衡时,测量平衡吸附压力和吸附气体量。所以吸附法测得的表面积实质上是吸附质分子所能达到的材料的外表面和内部通孔总表面之和。BET吸附等温方程:
式中: V 气体吸附量
Vm 单分子层饱和吸附量
P 吸附质压力
P0 吸附质饱和蒸气压
C 常数
求出单分子层吸附量,从而计算出试样的比表面积。令
BET直线图(见图1)
|
图1 BET图 |
将对作图为一直线,且1/(截距+斜率)=Vm ,代入(2)式,即求得比表面积。
用BET法测定比表面,最常用的吸附质是氮气,吸附温度在其液化点(-195℃)附近。吸附温度在氮气液化点附近。低温可以避免化学吸附。相对压力控制在0.05~0.35之间,低于0.05时,氮分子数离多层吸附的要求太远,不易建立吸附平衡,高于0.35时,会发生毛细凝聚现象,丧失内表面,妨碍多层物理吸附层数的增加。
2、孔径分布测定原理
根据孔半径的大小,固体表面的细孔可以分成三类:微孔,孔径〈 2nm,活性炭、沸石、分子筛会有此类孔;中孔,孔径2~50nm,多数超细粉体属这一范围;大孔,孔径〉50nm,Fe304、硅藻土等含此类孔。
气体吸附法孔径分布测定利用的是毛细冷凝现象和体积等效交换原理,即将被测孔中充满的液氮量等效为孔的体积。毛细冷凝指的是在一定温度下,对于水平液面尚未达到饱和的蒸气,而对毛细管内的凹液面可能已经达到饱和或过饱和状态,蒸气将凝结成液体的现象。
毛细凝聚模型:
在毛细管内,液体弯月面上的平衡蒸汽压P小于同温度下的饱和蒸气压P0,即在低于P0的压力下,毛细孔内就可以产生凝聚液,而且吸附质压力P/P0与发生凝聚的孔的直径一一对应,孔径越小,产生凝聚液所需的压力也越小。
凯尔文(kelvin)方程:
由毛细冷凝理论可知,在不同的P/P0下,能够发生毛细冷凝的孔径范围是不一样的,随着值的增大,能够发生毛细冷凝的孔半径也随之增大。对应于一定的P/P0值,存在一临界孔半径Rk,半径小于Rk的所有孔皆发生毛细冷凝,液氮在其中填充。开始发生毛细凝聚液的孔径Rk 与吸附质分压的关系:
Rk = - 0.414 / log(P/P0) …………………………………………(5)
Rk完全取决于相对压力P/P0。该公式也可理解为对于已发生冷凝的孔,当压力低于一定的P/P0时,半径大于Rk的孔中凝聚液气化并脱附出来。通过测定样品在不同P/P0下凝聚氮气量,可绘制出其等温脱附曲线。由于其利用的是毛细冷凝原理,所以只适合于含大量中孔、微孔的多孔材料。
根据毛细凝聚理论,按照圆柱孔模型,把所有微孔按孔径分为若干孔区,这些孔区由大而小排列。当P/P0=1时,由公式(5)式可知,Rk = ∞,即这时所有的孔中都充满了凝聚液,当压力由1逐级变小,每次大于该级对应孔径孔中的凝聚液就被脱附出来,直到压力降低至0.4时,可得每个孔区中脱附的气体量,把这些气体量换算成凝聚液的体积,就是每一孔区中孔的体积。综上所述,在气体分压从0.4到1的范围中,测定等温吸(脱)附线,按照毛细凝聚理论,即可计算出固体孔径分布,孔径测定的范围是2~50nm。